
1

William Cook

University of Texas at Austin

based on

Style: Toward Clarity and Grace

by Joseph Williams 2

• Subjects of sentences

name cast of characters

3

• Verbs name actions involving

characters

Missing Subjects

“Termination occurred after 23

iterations”

4

“The program terminated after

23 iterations”

Weak Verbs

“The algorithm supports
effective garbage collection in

5

effective garbage collection in

distributed systems”

Stronger Verbs

“The algorithm collects
garbage effectively in

6

garbage effectively in

distributed systems”

Verb

Verb Nominalization

discover discovery

7

discover discovery

move movement

collaborate collaboration

Adjective

Adjective Nominalization

difficult difficulty

8

difficult difficulty

applicable applicability

different difference

empty verb + NOM

“The police conducted an
investigation of the matter”

9

investigation of the matter”

Verb=Action

“The police investigated
the matter”

10

the matter”

“there is” + NOM

“There is a need for further
study of this program”

11

study of this program”

Name the Actor

“The engineering staff

must study this program

12

must study this program

futher”

Using “how”

“She reviewed how the
technique evolved”

13

technique evolved”

NOM + verb + NOM

“Extensive rust damage to the
hull prevented repairs to the

14

hull prevented repairs to the

ship”

“Because rust had damaged
the hull, we could not repair

15

the hull, we could not repair

the ship”

16

Name a an action

“I do not understand
her meaning or
his intention”

17

his intention”

(what she means
what he intends)

Common concepts

“Taxation without
representation was not the

18

representation was not the

central cause of the

revolution”

compilation

dependency

19

dependency

inheritance

implementation

Noun+Noun+..

Early childhood thought

disorder misdiagnosis often disorder misdiagnosis often

occurs in state-funded labs.

Noun+Noun+..

State-funded labs often

misdiagnosis disordered misdiagnosis disordered

thought in young children.

Concision

• It is imperative to think over

in a punctilious manner in a punctilious manner

each and every suggestion

that is offered to us.

Concision

• Consider each suggestion • Consider each suggestion

carefully.

Sentences

subject

• ideas already

mentioned

• familiar ideas

24

• familiar ideas

verb •action

object •new ideas

Topics form a logical
sequence of ideas

25

sequence of ideas

old new old new old newold new

Active

“Our partners were old
friends… but they let us

26

friends… but they let us

down. The partners broke the

agreement.”

Passive

“We thought we had a good
agreement. Then we found
out who killed it. The

27

out who killed it. The
agreement was broken by the
partners.”

The Point

Intro Discussion

28

Intro Discussion

The point
(best)

…or here
(intro para.)

Emphasis

Put important things at the
end

29

end

sentence final words

paragraph last sent.

section last para.

Paper

Section

Containers

•Large-scale
Structure

•Sequence of

30

Paragraph

Sentence

•Sequence of
items

Specific rules

Section Titles

First sentence
(or the point)

31

must include all words in

section title

(except intro/conclusion)

Intro Discussion

I D I D I D Intro Disc

paper

paragraphs sections

Intro Disc

32

I D I D I D

paragraphs

I D I D I D

paragraphs

I D I Dsentences

sentences

Problems such as the design of distributed controllers are
characterized by modularity and symmetry. However, the
symmetries useful for solving them are often difficult to determine
analytically. This paper presents a nature-inspired approach called
Evolution of Network Symmetry and mOdularity (ENSO) to solve
such problems. It abstracts properties of generative and
developmental systems, and utilizes group theory to represent
symmetry and search for it systematically, making it more
evolvable than randomly mutating symmetry. This approach is

Before

33

evolvable than randomly mutating symmetry. This approach is
evaluated by evolving controllers for a quadruped robot in
physically realistic simulations. On flat ground, the resulting
controllers are as effective as those having hand-designed
symmetries. However, they are significantly faster when evolved
on inclined ground, where the appropriate symmetries are difficult
to determine manually. The group-theoretic symmetry mutations
of ENSO were also significantly more effective at evolving such
controllers than random symmetry mutations. Thus, ENSO is a
promising approach for evolving modular and symmetric
solutions to distributed control problems, as well as multiagent
systems in general.

The design of distributed controllers to coordinate functional units
often involves symmetric relationships between modular
components. For example, the movement of joints of a quadruped
robot on an unknown terrain exhibit many degrees of symmetry.
However, the symmetries useful is such controllers are often
difficult to determine analytically. Inspired by nature, we have
developed Evolution of Network Symmetry and mOdularity
(ENSO) to generate controllers automatically. ENSO abstracts
properties of generative and developmental systems and utilizes
group theory to represent symmetry and search for it

After

34

group theory to represent symmetry and search for it
systematically. We evaluate ENSO by evolving controllers for a
quadruped robot in physically realistic simulations. On flat ground,
the resulting controllers are as effective as those having hand-
designed symmetries. However, they are significantly faster when
evolved on inclined ground, where the appropriate symmetries are
difficult to determine manually. The group-theoretic symmetry
mutations of ENSO were also significantly more effective at
evolving such controllers than random symmetry mutations. Thus,
ENSO is a promising approach for evolving modular and
symmetric solutions to distributed control problems, as well as
multiagent systems in general.

The main theme underlying my research is how to build
a seamless computing environment so that users can
access their data and perform “computing” from any
network-connected device at any location. Personal and
mobile environments are characterized by heterogeneity
and changes in device resources, network availability,
bandwidths, location, user preference, and user mobility.

Before

35

bandwidths, location, user preference, and user mobility.
In order to be applicable in such diverse environments, it
is imperative for software systems to be adaptable. My
work has focused on building flexible infrastructures
that make it easier to build adaptable systems.

In doing so, I have explored the fields of distributed
systems, software architecture, data replication, and
declarative languages.

The focus of my research is on changing the way that
large distributed systems are developed. Rather than code
each component in low-level procedural language using
primitive concurrency and communication libraries, my
research demonstrates that complete systems can be
generated from high-level descriptions of the overall
system behavior, which are automatically compiled into
efficient code for individual distributed components. My

After

36

efficient code for individual distributed components. My
approach reduces a 30,000 line program to 500 lines of
code, while preserving the same level of performance.
The techniques I have developed focus on the hard
problem of fault tolerant data replication, which is
fundamental to the emerging paradigm of cloud
computing, in which users access heterogeneous services
via a wide range of mobile devices over unreliable
networks with dynamic bandwidth and latency
constraints.

The quality of error reporting of modern
software has decreased as its complexity
has increased. End-users take the cryptic
error messages given to them by programs
and struggle to fix their problems using
search engines and support websites.

Before

37

search engines and support websites.
Developers cannot improve their error
messages when they receive an ambiguous
or otherwise insufficient error indicator
from a black-box software component.

An error occurs when software cannot complete a
requested action as a result of some problem with
its input, configuration, or environment. A high-
quality error report allows a user to understand
and correct the problem. But the quality of error
reports has been decreasing as software becomes
more complex and layered. End-users take the

After

38

more complex and layered. End-users take the
cryptic error messages given to them by programs
and struggle to fix their problems using search
engines and support websites. Developers cannot
improve their error messages when they receive
an ambiguous or otherwise insufficient error
indicator from a black-box software component.

Virtual classes are class valued attributes of objects,
and they can be refined to subclasses in context of an
instance of a subclass, in a similar manner as
mainstream OO languages enable (virtual) methods to
be redefined in an instance of a subclass. This paper
formalizes the notion of virtual classes which is at the
core of the semantics of languages supporting higher-

Before

39

core of the semantics of languages supporting higher-
order hierarchies and family polymorphism such as
Caesar and gbeta. The main contribution of this work
is the extraction and presentation of a simple calculus,
vc, which faithfully reproduces the core structure and
properties of virtual classes in the abovementioned
full-fledged languages, along with a proof of its
soundness.

Virtual classes are class-valued attributes of objects. Like virtual
methods, virtual classes are defined in an object’s class and may be
redefined within subclasses. They resemble inner classes, which are also
defined within a class, but virtual classes are accessed through object
instances, not as static components of a class. When used as types,
virtual classes depend upon object identity – each object instance
introduces a new family of virtual class types. Virtual classes support
large-scale program composition techniques, including higher-order

After

40

large-scale program composition techniques, including higher-order
hierarchies and family polymorphism. The original definition of virtual
classes in BETA left open the question of static type safety, since some
type errors were not caught until runtime. Later the languages Caesar and
gbeta have used a more strict static analysis in order to ensure static type
safety. However, the existence of a sound, statically typed model for
virtual classes has been a long-standing open question. This paper
presents a virtual class calculus, vc, that captures the essence of virtual
classes in these full-fledged programming languages. The key
contributions of the paper are a formalization of the dynamic and static
semantics of vc and a proof of the soundness of vc.

